Selasa, 20 April 2010
TUGAS 4 A HUKUM KOMUTATIF | |||
1. A + B = B + A | |||
A | B | A+B | B+A |
0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 |
2. A . B = B . A | |||
A | B | A B | B A |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
1. (A + B) + C = A + (B + C) | ||||||
A | B | C | A+B | (A+B)+C | B+C | A+(B+C) |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
2. (A B) C = A (B C) | ||||||
A | B | C | A B | (A . B) C | B C | A (B . C) |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
1. | |||||||
A | B | C | B+C | A (B+C) | A . B | A . B + A | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 1 | 1 | 0 | 0 | 0 | |
0 | 1 | 0 | 1 | 0 | 0 | 0 | |
0 | 1 | 1 | 1 | 0 | 0 | 0 | |
1 | 0 | 1 | 1 | 1 | 0 | 1 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | |
2. | |||||||
A | B | C | B . C | A+ (B . C) | A+B | A+C | (A+B)(A+C) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1. | ||
A | A+A | |
0 | 0 | |
1 | 1 | |
2. A A = A | ||
A | A . A | |
0 | 0 | |
1 | 1 |
T5. | |||||
1. A . B + A . B' = A | |||||
A | B | B' | A B | A B' | AB+AB' |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 1 |
2. (A+B) (A+B') = A | |||||
A | B | B' | A+B | A+B' | (A+B)(A+B') |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 |
1. | |||
A | B | A . B | A+AB |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 |
2. | |||
A | B | A+B | A(A+B) |
0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 |
T7. | ||
1. 0 + A = A | ||
A |
| 0+A |
0 | 0 | 0 |
1 | 0 | 1 |
2. 0 . A = 0 | ||
A |
|
|
0 | 0 | 0 |
1 | 0 | 0 |
T8. | ||
1. 1 + A = 1 | ||
A |
| 1+A |
0 | 1 | 1 |
1 | 1 | 1 |
2. 1 . A = A | ||
A |
|
|
0 | 1 | 0 |
1 | 1 | 1 |
T9. | ||
1. A' + A = 1 | ||
A | A' | A'+A |
0 | 1 | 1 |
1 | 0 | 1 |
2. A' A = 0 | ||
A | A' | A' A |
0 | 1 | 0 |
1 | 0 | 0 |
T10. | |||||
1. A + A' B = A + B | |||||
A | B | A' | A' B | A+A'B | A+B |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 1 |
2. A ( A' + B) = A B | |||||
A | B | 'A' | A'+B | A(A'+B) | A . B |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 |
T11.THEOREMA De MORGAN'S | |||||
1. | |||||
A | B | A' | B' | (A+B)' | A' . B' |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
2. | |||||
A | B | A' | B' | (A . B)' | A'+B' |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 |
TUGAS 4 B
- Give the relationship that represents the dual of the Boolean property A + 1 = 1?
(Note: * = AND, + = OR and ' = NOT)
The complement of a Boolean variable
Which of the following relationships represents the dual of the Boolean property x + x'y = x + y?